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Under the influence of noise, metastable states in spatially one-dimensional systems decay via
nucleation of kink-antikink pairs. In a realistic sample, translational invariance is destroyed by the
finite size of the sample and by the presence of localized impurities. This leads to a competition
between homogeneous and heterogeneous nucleation, i.e., the generation of free kink-antikink pairs
in the bulk and kink-antikink pairs pinned at the sample surface or at impurities. For systems that
can be modeled by a bistable reaction-diffusion equation, we derive the rates of homogeneous and
heterogeneous nucleation in the framework of Kramers theory. In particular, the critical sample
length and the critical density of impurities associated with the crossover between qualitatively
different types of nucleation are derived. The results concerning the crossover density of impurities
turn out to depend strongly on how the impurities couple to the order-parameter field.

PACS number(s): 82.60.Nh, 05.40.+j, 05.70.Ln

I. INTRODUCTION

The decay of linearly but not globally stable states in
spatially extended noisy systems is of interest in many re-
spects. For example, maintaining a supersaturated state
during a given time requires a sufficiently low noise level
the knowledge of which can be of technical use. On the
other hand, the presence of a sufficiently strong noise
source is often necessary in order to accelerate processes
which are inhibited by activation barriers. Prominent

xamples are the nucleation problem at first-order phase
transitions [1], chemical reaction rates of processes in-
cluding activated intermediate states [2,3], and the nu-
cleation of dissipative structures such as, e.g., current fil-
aments in certain nonlinear semiconductors [4,5], to men-
tion only a few. These and many other systems of these
kinds in physics, chemistry, and biology are frequently
modeled by multistable reaction-diffusion equations sup-
plemented by a weak white-noise force [6,7]. Here, multi-
stability refers to the existence of a set of linearly stable
stationary states. Once a system is prepared in such
a state, every small perturbation decays to zero, and a
certain finite perturbation has to be applied in order to
escape from the basin of attraction. For example, the de-
cay of metastable states in equilibrium systems requires
an excitation called the “critical nucleus” with finite ac-
tivation energy AFE. States beyond this lowest saddle
state expand whereby the more stable phase is estab-
lished. Whereas a linearly unstable state decays imme-
diately due to the growth of infinitesimal fluctuations,
the very small probability of a finite fluctuation implies
a large time scale of the nucleation processes.

We will consider a spatially one-dimensional reaction-
diffusion equation for a real one-component order param-
eter. This system possesses a Lyapunov functional (en-
ergy functional) so that standard Kramers theory can be
applied [1,8-10]; effects based on the fact that generic
nonequilibrium systems are nonvariational will not be
considered (see, e.g., [11]). The nucleation rate can be
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expressed by the Arrhenius factor exp(—SBAFE) with the
activation energy AE and the noise strength 371, and a
prefactor containing the curvatures of the energy surface
in function space at the metastable and the activated
state, as well as the number of equivalent saddles. Note
that the lowest saddle state has one single negative cur-
vature associated with the growth rate of the unstable
mode. In reaction-diffusion equations with one spatial
coordinate the saddle corresponds to a stationary kink-
antikink pair (KAP) with an unstable amplitude mode.
A lot of work has already been done concerning the nu-
cleation of KAP’s in homogeneous samples (for a review,
see Ref. [8]). In particular, the nucleation rate has been
studied for the different limits of the weakly and strongly
supersaturated states and also for the nondiffusive case
including many-body effects of KAP’s [12,13].

Due to the existence of a Goldstone mode associated
with translational invariance the prefactor is proportional
to the sample length L; thus, as one expects, the rate is
an extensive quantity [1,9]. In realistic samples, however,
translational invariance is violated by the finiteness of the
sample extensions and by the existence of impurities, giv-
ing rise to heterogeneous nucleation of a KAP at these
inhomogeneities in contrast to homogeneous nucleation
of a free KAP in the uniform bulk. Depending on the
explicit form of the boundary conditions the nucleation
of a KAP at a boundary can be favored if the activation
energy is lower than in the bulk. In that case, there must
be a characteristic sample length L. below which bound-
ary nucleation is preferred. Note that if the bulk is a
“powder” composed of independent uniform grains, L !
can be interpreted as a density of grains associated with
the crossover between homogeneous and heterogeneous
nucleation of KAP’s at grain boundaries. Similarly, a lo-
calized pinning impurity [14] which lowers the activation
energy can act as a nucleation center, and one expects
the existence of a characteristic density of impurities p{,
associated with the crossover from homogeneous to het-
erogeneous nucleation.
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The aim of this paper is the derivation and the dis-
cussion of the rates rs, 7, and 7, of free, boundary
sustained, and impurity sustained, nucleation of KAP’s,
respectively. The considerations will be restricted to a
strongly supersaturated metastable state where the crit-
ical nucleus is a strongly interacting KAP. Furthermore,
an interaction of different KAP’s will be neglected, and a
dilute density of impurities will be assumed. We will not
enter into the question about the dynamics of the state
after an expanding domain of the globally stable phase
has formed; we only recall the well-known fact that in a
homogeneous sample a domain wall propagates into the
less stable state with a velocity approximately propor-
tional to the difference between the energy densities of
the states separated by the wall [15]. Although for suf-
ficiently weak impurity forces the dynamics of the KAP
could be described in terms of collective coordinates cor-
responding to the location of the kinks [16,17], to deal
with the general case of arbitrary impurity forces would
require more sophisticated methods.

In Sec. II, the model is introduced: it is a one-
dimensional bistable reaction-diffusion equation with a
piecewise linear nonlinearity. Compared to the frequently
used overdamped sine-Gordon equation or the Ginzburg-
Landau equation with polynomial nonlinearities, this
model has the advantage that analytical results are acces-
sible. In Sec. III, the strongly supersaturated metastable
and the activated state are discussed. The nucleation
rates are derived in Sec. IV, and in Sec. V the sam-
ple length L. and the density pf, associated with the
crossover between homogeneous and heterogeneous nu-
cleation are obtained. In Sec. VI, the results are il-
lustrated by two examples of different impurities, one
type with an impurity force independent of the order-
parameter field and another one where the field is coupled
back to the impurity.

II. THE MODEL

We consider a system the state of which is described
by the one-component order-parameter field ¢(z,t) obey-
ing the dimensionless, spatially one-dimensional reaction-
diffusion equation

dip = 82p+g— f(o) + Z 8(z — a;)F(¢) + &(a,t) .

(1)

The control parameter is denoted by g, and the nonlin-
earity f(¢) is modeled by the continuous and piecewise
linear function (Fig. 1)

q %9, <0,
pip—(1+p7%), 1<4¢,

where p? and ¢? are ratios of characteristic time scales.
The order parameter is assumed to satisfy homogeneous
Neumann boundary conditions (i.e., 8:¢|+r/2 = 0) at
the sample boundaries +L/2. The sum of the weighted
Dirac § functions on the right-hand side (RHS) of Eq.

..'l_

FIG. 1. The stationary uniform states (431,552,&3) of the
sample without impurity are given by the intersection points
of f(¢) (dashed) with g (dotted) and correspond to the ex-
trema of the potential V(¢) (solid).

(1) describes the action of pointlike impurities located
at aj. The associated inverse density of impurities,
pi—ml, and the length L of the sample, are assumed to
be much larger than any characteristic intrinsic length,
hence L, p;,} >> max{l,q,p}. The force F(¢) = —U'(¢)
of a single impurity acting on the order-parameter field is
related to a potential U(¢) by differentiation, which is de-
noted by the prime; specific examples of potentials U(¢)
will be given in Sec. VI. The small density of impurities
will allow us to neglect the interaction of the critical nu-
cleus with more than one impurity, and we will consider
a single impurity located at z = 0 for the calculations
in Sec. ITI. The last expression £(z,t) in Eq. (1) repre-
sents a weak white-noise force with vanishing expectation
value and é-function correlation (£(x,t)) = 0 and

(2, 1)E(3, 1) = (2/B)d(x — 2)8(t — 1) , (3)

where 3 > 1. If one deals with equilibrium systems, noise
refers to thermal fluctuations obeying 8~ = kT, where
k and T are Boltzmann’s constant and the temperature
of the heat bath coupled to the order-parameter field,
respectively.

The evolution equation (1) can be expressed in terms
of a Lyapunov functional E[¢] by

o= — 2 4 g(at) . ()

In the following we call
B L/2 1 ) 5
gl = [ | aa(3007 Vi) + S UG ©

the energy of the state ¢. One verifies that the continuous
density

4)2/2‘12 - g¢’ ¢ <0
V(p) =S —¢?/2 — go, 0<¢<1
1+p72)(1/2—-¢)+¢*/2p* —gb, 1< ¢

(6)

leads to f(¢) of Eq. (2). The potential density V(&) is
shown in Fig. 1. States that are independent of time
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correspond to stationary points of the energy, the min-
ima of which are stable. While the deterministic behav-
ior is a relaxation to a local minimum for nearby initial
conditions (;F < 0), the fluctuating force £ drives a
metastable state of the dissipative system (4) via acti-
vated states towards the global minimum of the energy.
Before deriving the characteristic time scale of this pro-
cess, the metastable and the activated states have to be
determined and some of their properties must be dis-
cussed.

III. THE METASTABLE AND THE ACTIVATED
STATES

Consider first a uniform sample void of any impurity
(i.e., F = 0). Stationary uniform solutions are then given

by

é1 = q%g, g<o0,
PR I 1<g<o0, ()
¢s=p°g+(1+p?), -1<g .

At g = 0 and g = —1 cusp-shaped saddle-node bifurca-
tions of uniform states occur (see Fig. 1). Linear stability
analysis shows that q~52 is linearly unstable and &, ¢3 are
linearly stable. Thus, in the range —1 < g < 0 there oc-
curs bistability of uniform states that are the minima of
the double-well-shaped potential V' (¢). The value geq of
the control parameter where é1 and &3 have equal energy
density is given by

b= -1+ VATA/ATA] . ®

Therefore, q~51 is metastable if goq < g < 0 and will de-
cay under the influence of noise via the nucleation of a
KAP. The restriction to the strongly supersaturated state
means that the case g = geq Will not be considered.

Let us first concentrate on localized bulk states located
far away from the sample boundaries. Since the station-
ary Eq. (1) is formally equivalent to the equation of
motion of a classical particle in a one-dimensional poten-
tial with two hills [15], the stationary solutions can be
illustrated in the phase plane (¢, 8,¢) as shown in Fig.
2. The solid curves are the trajectories connected to the
hyperbolic fixed point ¢;. The latter corresponds to the
metastable state, and the single-humped solution ¢(z) of
Eq. (1) given by the homoclinic trajectory corresponds
to the nucleus. Since the nucleus is not restricted to a
certain place in the sample, it will be called the “free
(critical) nucleus.”

For finite impurity force (i.e., F # 0), on the other
hand, it depends on the explicit form of F(¢) how many
J

FIG. 2. Phase plane (¢, 8- ¢) associated with the stationary
Eq. (1). F(¢) = 0: the metastable state é1 and the critical
nucleus correspond to the hyperbolic fixed point and to the
homoclinic curve (solid), respectively. F(¢$) # 0: solutions
belong to orbits in the phase plane starting from z = *oo
at the hyperbolic fixed point ¢ = ¢; and ending at z = +0
with a value of ¢ obtained from the intersection of the orbits
(solid) with the curves FF(¢)/2 (dotted).

different stationary solutions representing candidates for
the saddles exist. First, the free nucleus ¢(x — o) is
still a solution if it is located at a place zo such that
F(¢(—z0)) = 0 holds. Secondly, a finite value of F(¢) at
the impurity (z = 0) implies a finite jump of the deriva-
tive: 0,¢(0%) — 8,9(07) = —F(4(0)) (self-consistency
condition). In this case, the solution can be constructed
by plotting the functions +F(¢)/2 in the phase plane
and matching those parts of the trajectories which start
at their intersection point with +£F(¢(0))/2 at ¢ = 0
and end at ¢; for z = Foo (see Fig. 2). Obviously,
this construction satisfies the self-consistency condition
and the requirement of the continuity of the solution.
We will restrict the investigations in the following to the
second case where the relevant saddle (i.e., having the
lowest energy among saddle solutions) is symmetric at
the impurity. The further restriction to the strongly su-
persaturated metastable state will be accomplished by
the limitation to the case where a free critical nucleus
satisfies ¢(0) < 1; an equivalent condition for g will be
given below. For the sake of clarity, we will use the ab-
breviations F' = F(¢(0)), U = U(¢(0)), F' = F'(¢$(0)).
If #(0) < 0, the localized state is given by

$(x) = 1+ [$(0) — d1] exp(—[z|/q) , (9)

where terms of O(exp{—L/q}) have been neglected. The
amplitude ¢(0) is determined by the self-consistency con-
dition ¢(0) = ¢; + ¢F/2, and the requirement ¢(0) < 0
implies F' < —2qg. The stationary single-humped state
satisfying 0 < ¢(0) < 1 and ¢(z) — ¢, for large |z| is
given by

() = {4}2 + ¢y cos(z) — (F/2)sin(|z]), |e| < Tim , (10)

¢1 [1 — exp{(zim — |z|)/q}]s

Tim < |Z| ,
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where again terms of O(exp{—L/q}) have been neglected.
The states given by Egs. (9) and (10) are shown in Fig.
3 for various values of F'. The condition ¢(zim) = 0 and
the differentiability of ¢(z) at zi,, imply

F = F. sin(z¢ — ©im) , (11)
where

F. = —-2g+/1+ ¢ (12)

is a critical value of the force which will be discussed be-
low. Equation (11) provides the size 2z;, of the localized
state, where 0 < xiy, < ¢ + 7 with £y = m — arctan(q)
being half of the size of the free critical nucleus (see Fig.
3). The self-consistency condition reads

(Ba)? = 3(F2 = F?) (13)

where F' depends on the amplitude ¢(0) = b2+ (2)2 of the
critical nucleus.

One finds that for the free critical nucleus the restric-
tion ¢(0) < 1 requires

~(eviTa) (14)

where z;, = x is independent of the control parame-
ter g, and where the amplitude ¢(0) = éo + F. shrinks
linearly with g. The stability eigenvalue problem of
the nonuniform state against perturbations of the form
0¢ o exp(At) turns out to be equivalent to the determi-
nation of the quantum-mechanical energy eigenvalues of
a particle in a one-dimensional rectangular potential well.
For systems of the type of Eq. (1), it can be shown that a
free single-humped state is unstable against a symmetric
amplitude mode [4,18]. Due to translational symmetry in
the limit of infinite sample length L, there exists a second
non-negative eigenvalue which vanishes and indicates the
existence of the Goldstone mode 9,¢. For finite but still
large L this eigenvalue is shifted by an amount Ag of
O(exp{—L/q}) which can be understood as the growth
rate arising from the interaction of the localized structure
[16,17] with its mirror images at the sample boundaries.

9>4g1

FIG. 3. Stationary solutions (metastable states and sad-
dles) ¢(z) for some values of the impurity force F (¢ = 1,
g =—0.2).

All the other stability eigenvalues are negative and thus
belong to damped modes. In order to derive A by sta-
bility analysis, one has to linearize Eq. (1) at the exact
solution satisfying the boundary conditions at z = +L.
One finds for large L

8qg°
Ap = To.41F exp{(2zy — L)/q} , (15)

where the denominator equals the activation energy
AE[¢] = E[¢] — E[¢$1] of the free critical nucleus (index
f)

L/2
do (0.9)° = T D p2 (1)
2

AE; = |10,4|? s/

The exponentially small shift Ag of the zero eigenvalue
causes an extremely slow drift of the critical nucleus.
Since the time scale of this motion is much larger than
any other relevant time this shift will be neglected in the
following.

Next, we note that the localized surface states follow
directly from the free bulk nucleus. Indeed, if the local-
ized bulk solution ¢(x — xo) is centered at a boundary
(i.e., zg = £L/2) the resulting state satisfies the bound-
ary conditions and provides a stationary solution of Eq.
(1) possessing only half of the activation energy com-
pared to a free critical nucleus in the bulk. It follows
from the Neumann boundary conditions that this surface
state describing a kink pinned at a boundary is a saddle
since eigenvalues of even eigenfunctions remain the same
as for the bulk nucleus but odd eigenfunctions do not oc-
cur.

Consider now an impurity with small |F/F.|. The
main effect of the weak impurity force destroying trans-
lational symmetry is again expected to be a small shift
Apin of the former zero eigenvalue. One can approximate
Apin by using a collective-coordinate ansatz [16,17]. Pro-
jecting Eq. (1) onto the Goldstone mode 9,¢ of the free
localized state ¢(xz — xo(t)) at zo leads to a differential
equation for x¢. Linearization of the dynamics at the
stationary state o = 0 yields the growth rate

2
2 F F
o il = . 17
Apin P Fc+0((Fc> ) (17)

In order that ¢(x) is a saddle with a single unstable di-
rection, F' > 0 is required which is equivalent to a pin-
ning impurity. (“Pinning” refers here to the stabiliza-
tion of the translational mode.) Equation (11) then im-
plies zi, < z; reflecting the contraction of the pinned
nucleus. If 0 < F < —2qg, a single solution zf, with
0 < z{, < z¢ belonging to the positive sign in Eq. (13)
exists; for F. > F > —2qg an additional solution zT
of Eq. (11) exists, associated with the negative sign in
Eq. (13) (see Fig. 4 below). At the critical value F, of
a constant impurity force the metastable state and the
saddle merge at a saddle-node bifurcation. This implies
a lowering of the bifurcation point g. = 0 by a general
impurity force, provided F'(0) # 0 (see Fig. 5 below).
Note that for negative values of the impurity force [e.g.,
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for odd F(¢)] metastable states exist and are associated
with the nonhomoclinic orbits connected to ¢, in Fig. 2
(F = —0.5 in Fig. 3). )

From the above mentioned equivalent Schrédinger
problem one finds that the stability eigenvalue /\SO) of
the unstable breathing mode is given by the largest real
solution of

VI—A (\/)\ +q2— F’/z)

_(\/rq—zp'/u 1—)\)tan(v1—/\zim)=0 )
(18)

and the eigenvalue /\S,” (E Apin) associated with the first
antisymmetric mode is given by the largest real solution
of

V1= 4+ /A4 g 2tan(v1 — X zim)

x tanh [\/Tq"z(L/Z - mim)] =0 . (19)

If F'=0 (i.e., Zim = xy), one finds again that ,\S," goes
to zero for L — oco. We mention that it is necessary
to consider the term tanh(.-.) in Eq. (19) for strong
forces where ,\S" < —q~2 belongs to the quasicontinuous
spectrum. Equations (18) and (19) further imply that an
attractive impurity causes a negative shift of ,\5,1) but not
necessarily of A (see Fig. 6 below). In the following,
the other eigenvalues A'Er?,)s (n > 1) will not be needed
explicitly and will thus not be specified.

From Eq. (5) one obtains the change of the activation
energy caused by an impurity:

Ay = U, ~ Up + TF2(2h — 27) + 5[64(0) ~ B2 F.
—56m(© = B1)F (20)

where the indices m and s indicate the metastable and
the saddle state corresponding to Egs. (9) and (10), re-
spectively. In the limit of a very small impurity force,
Eq. (20) reduces simply to AE;y, =~ Us; — U,,, where the
potentials U(¢) are taken at the solutions ¢,, , for F = 0.
Equation (20) holds for F,,, < —2qg; otherwise, if —2¢gg <
F,, < F, the additional term —F2 [z + g + (F,./29g)] /4
must be added to the RHS of Eq. (20). The total acti-
vation energy consists of a sum of AE; and AEj,, given
by Egs. (16) and (20), respectively:

AE = AEf + AEi, . (21)

Clearly, impurities serving as nucleation centers con-
tribute with a negative AEj,.

IV. NUCLEATION RATES

Now we want to determine the escape rate from
the metastable state, or, equivalently, the inverse time
needed to cross the energy barrier in the presence of weak

white noise. A common definition of the nucleation rate
r is given by the ratio of the probability flux j across
the saddle and the probability n to be in the metastable
well, r = j/n (“Hux over population;” see, e.g., [8]). In
the framework of Kramers theory the rate r in the system
with many degrees of freedom given by Eq. (1) becomes
[1,8-10]

A(O)
r="2_Se PAE (22)
2w
where the prefactor in front of the Arrhenius term is the
product of the dynamic prefactor A /2m and the static
prefactor S. The former is characterized by the growth
rate A{¥ > 0 of the unstable mode at the saddle. The
static prefactor is given by

1= 8/2m)
S =

= ) (23)
[T p/27)

and contains the eigenvalues )\53,)3 of the stability eigen-

value problem of the metastable solution and of the crit-
ical nucleus, respectively. It must be emphasized that
Kramers theory fails close to the saddle-node bifurcation
where BAFE — 0, and where therefore the following re-
sults are not correct.

The factors y/—27w/BA(™) in Eq. (23) arise from a
Gaussian approximation of the partition function close
to the stationary points of the energy. If there exists a
discrete symmetry giving rise to N equivalent saddles,
the static prefactor S must be replaced by NS. In the
case of translational invariance the localized nucleus ¢(z)
breaks this continuous symmetry, implying the existence
of a continuous manifold of equivalent saddles. Due to
the existence of a Goldstone mode with vanishing eigen-
value the Gaussian approximation cannot be applied in
this direction of the function space, and the integration
must be performed more carefully. One can show that the
exponentially diverging factor /—2n/BAp in Eq. (23)
must be replaced by the “volume of the translation group
in function space”

V=L8.9l , (24)

through which the rate becomes proportional to the
length L of the sample [1,9,12].

We proceed now by sketching the derivation of the
static prefactor S by using well-known field-theoretical
techniques concerning the ratio of determinants of lin-
ear operators in Hilbert space [19]. In order to obtain
an analytical expression one constructs from the stabil-
ity eigenvalue problem analytical functions D, s(A) of
the complex variable X with the following properties [20].
First, their zeros are the eigenvalues /\Sf,),, n=20,1,...
Secondly, the order of these zeros is equal to the mul-
tiplicity (which equals unity in the present case) of the
corresponding eigenvalues. Thirdly, they are normalized
in the sense that lim|y|oc Dm(A)/D,(A) = 1 (except on
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the real line). From the uniqueness of a meromorphic
function on the complex sphere if the poles, the zeros,
and a single regular value are known, it follows that

TI - X%

Dm(A) _ "a
Ds(A) — JTx =A™

Consequently, if there is no zero eigenvalue the static
prefactor can be expressed as

= v/=Dm(0)/D,(0) . (26)

As mentioned above, the determination of the stability
eigenvalues turns out to be equivalent to the problem
of a quantum particle in a one-dimensional rectangular
potential well. Solving this Schrédinger problem leads to
the functions D(A) which finally have to be normalized.
This procedure is straightforward and will not be carried
out here in detail.

First, we give the result for the nucleation rate of a
free KAP in the homogeneous bulk. It turns out that for
large L

(25)

D, (0) 1
D,(0)  4exp(—L/q)

Clearly, the exponentially diverging ratio (27) for L — oo
indicates the existence of the zero eigenvalue associated
with translational invariance. As remarked above, Ap
contained in D,,(0) must be eliminated; by using Egs.
(15) and (24) one obtains (see also Ref. [20])

A D,
57 = Lliowally| 52 T = Iy P2 exo(ay )

(28)

(27)

Hence the nucleation rate of a free KAP can be written
as

rg=1L g-;— x(q) V/BAE; exp(—BAEs) (29)

where Ay is the positive solution of Eq. (18) for F = 0,
and

_ q
X0 = i ae g S 60

The result Eq. (29) is of the form of the rate given in
Ref. [12]. The strong growth of the rate for ¢ — 0 is a
consequence of the metastable potential well being ex-
tremely narrow in this limit.

In the same way, one obtains from Egs. (22) and (26)
the nucleation rate r, of a kink at the surface, where
now the antikink corresponds to the mirror image at the
boundary. Taking into account that antisymmetric eigen-
functions do not appear, one finds

D,,.(0) _ -1
D,(0) V1+ q?exp(—zs/q)

(31)

Since the activation energy equals one half of the value
compared to the bulk case [see Eq. (16)], one finally
obtains

2m V14 ¢?

where the factor 2 on the RHS reflects the number of
the boundaries. This result holds for Neumann bound-
ary conditions; other boundary conditions can be treated
in an analogous manner. If the sample consists of IV in-
dependent grains separated by (Neumann type) bound-
aries, the rate (32) has to be replaced by r, = Nprp =
Lpyry, where pp is the density of grains.

In the presence of impurities, on the other hand, the
stability eigenvalue problem yields

Ty =

D(0) =1-—gqF'/2 (33)
for the solution (9), and for (10)

F(¢y + FF'/4)
Texp(—2mim/q) . (34)

D(0) = —
From Egs. (26), (33), and (34) the static prefactor Sim
for a single impurity follows immediately. In particular,
one finds

S 299> (1 - qF7/2)

F, (¢2 + F,F! /4)

if F < —2qg. On the other hand, if F, > F' > —2qg, both

D,,(0) and D,(0) are given by Eq. (34). We mention that

to O(F) the result (35) can be obtained alternatively by

multiplying Eq. (27) with Ap //\pm with Apin from Eq.

(17). With the help of the previous results the rate for
the nucleation of a KAP at a single impurity is

/\im

Tim = ? Sim eXp(—‘,BAE) N (36)

xp(Tim/q) (35)

where )\, is the positive solution of Eq. (18). In the
presence of impurities with a dilute density pim = Nim/L
(K 1/2x;y), the rate becomes LpjyTim.

V. THE CROSSOVER FROM HETEROGENEOUS
TO HOMOGENEOUS NUCLEATION

In a sample consisting of grains each containing a dilute
density of impurities, the critical nucleus can be gener-
ated by fluctuations in different ways, namely, pinned at
an impurity, at a grain boundary, or in a uniform part of
the bulk. Consequently, the total rate becomes

Ttot = (1 — Pim2Tim — pp22£)7f + Noro + NimPim , (37)

where the reduction of the effective length available for
nucleation of free KAP’s has been taken into account.
From Eq. (37) the question about the relevant part of
the total rate arises. In order to discuss the crossover
between homogeneous and heterogeneous nucleation, we
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compare the individual rates.
The crossover from boundary to bulk nucleation occurs
at the characteristic system size L. defined by ry = r4:

L. = 2\/71',/1-%(12 (1+z5/q)

BAEy
x exp(—zy/2q) exp(BAEs/2) . (38)

The length L. is exponentially large for very small noise
strengths; in this case nucleation is localized with a large
probability at the boundaries of the sample, provided
the impurities in the bulk are not relevant. From Eq.
(38) the crossover density of grains in a “powder” follows
immediately from (1 — p§2z¢)ry = pgLry:

pf=(Le+2zx4) P LY, 39
b f c

being valid as long as L. > 2zy.

A crossover density pf,, of impurities can be defined in
a similar way. From (1 — pf 2%im)7rs = p5,L7im it follows
that

0
Pim

Pin = T30 20 (40)
where, e.g., for F,,, < —2qg,
pp - As _:_8_F5($2+F8F;/4)
T Aim  2m (1-qF7,/2)
x exp{(zs — Tim)/q} exp(BAEin) (41)

is small for negative pinning energy AFE;, and large g;
hence pf_ ~ p¥ . If pim =~ (22im) !, the interaction of a
nucleus with more than one impurity becomes important
and the result (41) is no longer correct.

We will not discuss here the crossover from boundary
nucleation to impurity nucleation, which can be done eas-
ily by comparing pprp With pimTim.- We only notice that
for sufficiently large B boundary nucleation is preferred
as long as AE;, > —AE¢/2.

VI. EXAMPLES

The previous analytical results for the nucleation rate
of KAP’s at impurities can be further evaluated, once the
function F(¢) is given. Unfortunately, even the qualita-
tive form of an impurity force is usually not known. Nev-
ertheless, it is instructive to consider simple examples. It
should be clear that whether heterogeneous nucleation
becomes important depends mainly on the change of the
activation energy caused by the impurity. In the follow-
ing, we study first the case of a constant force and then
the effect of a coupling of the order-parameter field to
the impurity by means of an explicit dependence of F on
é.

The most simple type of an impurity is given by a con-
stant force F(¢) = F independent of ¢. For a weak force,
|F| < 1, a projection of Eq. (1) onto the translational
Goldstone mode 9,¢(z — zo) of the free critical nucleus
yields an ordinary differential equation for the collective

coordinate zg:

F d

= T0udIF dao®®) - (42)

Zo
This equation describes the motion of an overdamped
particle in a potential proportional to ¢(x¢). Obviously,
the only stationary state is given by zo = 0. Pinning
requires F' > 0, implying also a decrease of the activation
energy (see Figs. 4 and 6 below). By using U = —F¢ and
F’ = 0, from the results of Secs. IV and V the activation
energy, the static prefactor, the rate, and the density pf
are obtained for arbitrary positive F'. For 0 < F < —2qg
the results follow directly from Egs. (20), (35), and (41).
In the range F, > F > —2qg, on the other hand, the
static prefactor reads

T/ 4} (43)

and at the saddle-node bifurcation F = F. where the
metastable and the unstable state collide, one finds
Sim — 1 since z{, — zi. The activation energy is
given by

Sim = exp{ (2} —

AE = S (¢} — o) FZ — $3F (44)

=

and vanishes at F = F,, as one expects. The activa-
tion energy AE, the size Zjm, and the inverse prefac-
tor S are plotted in Fig. 4 as functions of the im-
purity force. In order to see how the bifurcation di-
agram is changed by an impurity, the spatial average
$ave = L™ [ dz ¢(z) of the field ¢(z) is chosen as the
order parameter. Figure 5 illustrates the shift of the
saddle-node bifurcation at g = 0 for different strengths of
impurity forces. The equations of state assogiated with
Egs. (9) and (10), respectively, are ¢ave = ¢1 + q¢*F/L
and ¢ave = b1 + {(ZTim + 9)v/1+ ¢2F. — F}/L. The
stability eigenvalues /\Sg), /\ﬁ"), and )\Sl) are plotted in
Fig. 6 as functions of the impurity force. As long as
0 < F < —2qg, the largest stability eigenvalue of the
metastable state remains constant: /\5,2) = —q 2. For
larger F' this eigenvalue grows and becomes zero at the
saddle-node bifurcation where it merges with the largest

10 e l
0.5- SNOF
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1
""""""" pd
0.0+ S B
0.0 05 10

FIG. 4. Properties of the metastable state and the critical
nucleus [constant impurity force F(¢) = F; g=1, g = —0.2]:
AE/AE, (solid), Tim/x; (dashed), S;;! (dotted). =i, = 0 for
F < —2gq; =7, — =i, at the saddle-node bifurcation F' = F..
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FIG. 5. Shift of the saddle-node bifurcation of the critical
nucleus (dashed) and the metastable state (solid) caused by
an impurity with constant force F(¢) = F for various values
of F. Order parameter: the spatial average ¢ave of ¢(z);
L = 30.

eigenvalue ALY of the saddle. The decrease of ALY asso-
ciated with the translation mode at F = 0 reflects the
increase of pinning.

The nucleation rates r¢, ry, rim, and 7ot are plotted
as functions of the inverse noise strength in Fig. 7, which
illustrates qualitatively the crossover between heteroge-
neous and homogeneous nucleation.

In order to study the effect of the coupling of the or-
der parameter to the impurity, we consider the impurity
force F' = e€¢. For small |e| one can again project the
impurity force onto the translational Goldstone mode of
the free nucleus and obtain for the collective coordinate
Zo

£

. d
To = 775
7 2/[0.9(]7 dzo

[¢%(z0)] - (45)
This equation describes an overdamped particle moving
in the potential ox ¢2. There exist three stationary solu-
tions close to the impurity: zo = 0 and +zy. If ¢ > 0,
the potential consists of two hills at +zs; hence the im-
purity is attractive for |z9| < 2y and repulsive for larger
distances. Thus, a saddle is given by the nucleus cen-
tered at the impurity; it can be shown to have less en-
ergy than the free nucleus (i.e., |zo| > zy) if ¢ < V3.

quasi=continuous spectrum

o 05 1.0
impurity force

FIG. 6. Stability eigenvalues of states pinned at an im-
purity: unstable mode A" (s) and first stable mode A
(p) of the critical nucleus, first stable mode Ay (m) of the
metastable state. Solid curves: F(¢) = F,q=1, g = —0.2,
scale of = axis F'/F.. Dashed curves: F(¢) = e¢, ¢ = 1, scale
of = axis €/e..
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FIG. 7. Dependence of the nucleation rate on BAEy in a
grain of length L = 10* containing a single impurity with
constant force F(¢) = 0.49. For very weak noise, the total
rate 7ot (solid) is dominated by nucleation at an impurity,
Tim (long-dashed); without impurities the nucleation at the
boundaries dominates (short-dashed). For sufficiently large
noise homogeneous nucleation 75 (dotted) becomes relevant.

(g=1,9g=-02)

On the other hand, if ¢ < 0 the stationary points +xy
are the saddles, whereas for £y = 0 both amplitude and
translational mode have positive growth rates. In the
following € > 0 is assumed. For arbitrary positive € the
self-consistency condition mentioned in Sec. III implies
the amplitudes

__$
1—eq/2 "’

¢s(0) = %ﬁf’mu +VI+ (1 +e2/a)] ,  (47)

and the size x;, = xy —arcsin(e¢,(0)/F.) turns out to be
independent of the control parameter g. The metastable
solution exists only if € < e, = 2/q; at €. the amplitude
¢m(0) “explodes” and the pinning energy AFE;,, becomes
infinite, AE;,, ~ 4¢%g%/(e. — €) + O(1).

Intuitively one expects that for positive € the impurity
force F(¢) = e¢ tends to destabilize a state. Indeed,
one finds an increase of the largest stability eigenvalues
belonging to symmetric modes, as shown in Fig. 6. For
example, A ~ (£/2)% — (£./2)2+O(e/L). Similarly, the
eigenvalue A? associated with the unstable mode of the
critical nucleus increases with €. On the other hand, Apin
is shifted to negative values, which indicates pinning.

An interesting property is that the pinning energy can
depend nonmonotonically on €. It is easy to show that
for ¢ < v/3 a finite interval of ¢ exists where AE;, < 0,
and where thus heterogeneous nucleation at impurities is
expected to dominate. The rate is maximal at the local
minimum obeying U,, = U,, i.e., €min = (3 — ¢?)/2¢. In
Fig. 8 the pinning energy is shown as a function of ¢ for
various values of q.

This short discussion illustrates that the effect of impu-
rities on nucleation depends strongly on the specific inter-
action of the impurity with the order-parameter field. In
other words, microscopic details (i.e., specific properties
of pinning impurities) play an important role concerning
the type of nucleation.

¢m(0) (46)
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FIG. 8. Pinning energy A Ejr, of an impurity with the force
F(¢) = e¢ for various values of g. For ¢ < /3 there exists
a finite range of ¢ where AF;, < 0 implying heterogeneous
nucleation.

VII. SUMMARY

In this paper we studied the effects of the finite sam-
ple size and of the presence of dilute pointlike impurities
on the nucleation rate of kink-antikink pairs in a strongly
supersaturated metastable state. Considering a reaction-
diffusion equation with a piecewise linear nonlinearity
and Neumann boundary conditions, we derived the rates
for homogeneous and heterogeneous nucleation. The re-

sults could be expressed analytically for an arbitrary im-
purity force function F'(¢) of the order-parameter field.
The comparison of the rates yield the critical sample
length L. and the critical impurity density p, associ-
ated with the crossover between the different kinds of
nucleation. Due to lacking translational invariance and
the lower activation energy of a nucleus at the boundary
compared to that of a free nucleus, L. turns out to be
proportional to (BAEf)~/2exp(BAEf/2). If the sam-
ple consists of an array of autonomous grains, L ! can be
interpreted as the density of grains associated with the
crossover between homogeneous and grain-boundary nu-
cleation. The comparison of homogeneous and impurity
nucleation similarly yields pf,, « v/Bexp(BAFEin). Be-
sides the change in the activation energy a generic pin-
ning impurity is able to lower the critical value of the
control parameter. Finally, we have illustrated the strong
dependence of the results on the specific properties of the
impurity (i.e., its coupling to the order-parameter field).
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